Experimental Investigation of Frequency Domain Channel Extrapolation in Massive MIMO Systems for Zero-Feedback FDD
نویسندگان
چکیده
Estimating downlink (DL) channel state information (CSI) in frequency division duplex (FDD) massive multi-input multi-output (MIMO) systems generally requires pilots and feedback overheads. Accordingly, this paper investigates the feasibility of zero-feedback FDD MIMO based on extrapolation. We use high-resolution parameter estimation (HRPE), specifically space-alternating generalized expectation-maximization (SAGE) algorithm, to extrapolate DL CSI extracted parameters multipath components uplink channel. apply HRPE two different models: vector spatial signature (VSS) model direction arrival (DOA) model. verify these methods through real-world data acquired from measurement campaigns with types sounders: a) a switched array-based, real-time, time-domain, outdoors setup at 3.5 GHz, b) virtual high-accuracy, frequency-domain, indoors 2.4 5-7 GHz. The performance metrics extrapolated channels that we evaluate include mean squared error, beamforming efficiency, spectral efficiency multiuser scenarios. results show HRPE-based extrapolation performs best under simple VSS model, which does not require array calibration, if BS is an open outdoor environment having line-of-sight (LOS) paths well-separated users.
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
FDD Massive MIMO via UL/DL Channel Covariance Extrapolation and Active Channel Sparsification
We propose a novel method for massive Multiple-Input Multiple-Output (massive MIMO) in Frequency Division Duplexing (FDD) systems. Due to the large frequency separation between Uplink (UL) and Downlink (DL), in FDD systems channel reciprocity does not hold. Hence, in order to provide DL channel state information to the Base Station (BS), closed-loop DL channel probing and feedback is needed. In...
متن کاملChannel Feedback Based on AoD-Adaptive Subspace Codebook in FDD Massive MIMO Systems
Channel feedback is essential in frequency division duplexing (FDD) massive multiple-input multipleoutput (MIMO) systems. Unfortunately, previous work on multiuser MIMO has shown that the codebook size for channel feedback should scale exponentially with the number of base station (BS) antennas, which is greatly increased in massive MIMO systems. To reduce the codebook size and feedback overhea...
متن کاملEfficient Downlink Channel Probing and Uplink Feedback in FDD Massive MIMO Systems
Massive Multiple-Input Multiple-Output (massive MIMO) is a variant of multi-user MIMO in which the number of antennas at each Base Station (BS) is very large and typically much larger than the number of users simultaneously served. Massive MIMO can be implemented with Time Division Duplexing (TDD) or Frequency Division Duplexing (FDD) operation. FDD massive MIMO systems are particularly desirab...
متن کاملChannel Estimation for Fdd Massive Mimo Using Bayesian Estimator
Massive MIMO systems that for a cellular network, the channel from user equipment to a base station is composed of few grouped paths in space. With a very large antenna array, signals can be observed under extremely sharp regions in space. In the FDD mode, each BS sends a downlink training matrix to its served UEs which estimates the desired channel based on the downlink measurements and feeds ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Wireless Communications
سال: 2021
ISSN: ['1536-1276', '1558-2248']
DOI: https://doi.org/10.1109/twc.2020.3028161